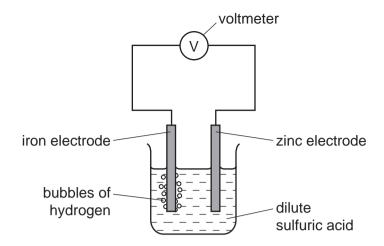
(a)		e following are two examples of substitution reactions. Only the reaction involving orine is a photochemical reaction.
		$CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$
		$CH_4 + Br_2 \rightarrow CH_3Br + HBr$
	(i)	Explain the phrase substitution reaction.
		[1]
	(ii)	How do photochemical reactions differ from other reactions?
		[1]
(b)		nd forming is exothermic, bond breaking is endothermic. Explain the difference ween an exothermic reaction and an endothermic reaction.
		[2]

1

(c) Use the bond energies to show that the following reaction is exothermic. Bond energy is the amount of energy (kJ/mol) which must be supplied to break one mole of the bond.

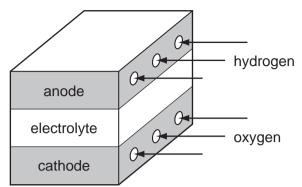

Bond energies in kJ/mol

Cl-Cl	+242
C-C1	+338
C–H	+412
H_C1	⊥ //31

bonds broken	energy in kJ/mol
total energy =	
bonds formed	energy in kJ/mol
total energy =	

[Total: 8]

2 The diagram shows a simple cell.


(a)	Write an equation for the overall reaction occurring in the cell.	[2]
(b)	Explain why all cell reactions are exothermic and redox.	
(c)	Which electrode, zinc or iron, is the negative electrode? Give a reason for your choic	e.
(d)	Suggest two ways of increasing the voltage of this cell.	[4]
		[2]

[Total: 9]

3	Some h	ydroxides, nitrates and carbonates decompose when heated.
	(a)	Name a metal hydroxide which does not decompose when heated.
		[1]
	(ii)	Write the equation for the thermal decomposition of copper(II) hydroxide.
		[2]
	(iii)	Suggest why these two hydroxides behave differently.
		[1]
	(b)	Metal nitrates, except those of the Group 1 metals, form three products when heated. Name the products formed when zinc nitrate is heated.
		[2]
	(ii)	Write the equation for the thermal decomposition of potassium nitrate.
		ere are three possible equations for the thermal decomposition of sodium drogencarbonate.
		$aHCO_3(s) \rightarrow Na_2O(s) + 2CO_2(g) + H_2O(g)$ equation 1
		$HCO_3(s) \rightarrow NaOH(s) + CO_2(g)$ equation 2 $aHCO_3(s) \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$ equation 3
		e following experiment was carried out to determine which one of the above is the
		rect equation.
		snown mass of sodium hydrogencarbonate was heated for ten minutes. It was then owed to cool and weighed.
	Ма	sults ss of sodium hydrogencarbonate = 3.36 g ss of the residue = 2.12 g
	M_{r}	Iculation for NaHCO ₃ = 84 g; M_r for Na ₂ O = 62 g; M_r for NaOH = 40 g for Na ₂ CO ₃ = 106 g
	(i)	Number of moles of NaHCO ₃ used =[1]

s Na_2O , number of moles of $Na_2O = \dots$	(11)
s NaOH, number of moles of NaOH =	
s Na_2CO_3 , number of moles of $Na_2CO_3 = \dots$ [2]	
umber of moles calculated in (i) and (ii) to decide which one of the three is correct. Explain your choice.	(iii)
[2]	
• •	
[Total: 13]	

4 Fuel cells are used in spacecraft to produce electrical energy.

(a)	Hov	v is oxygen obtained from liquid air?
		[2
(b)	Нус	rogen and oxygen react to form water.
		$2H_2 + O_2 \rightarrow 2H_2O$
	(i)	Give an example of bond breaking in the above reaction.
		[1
	(ii)	Give an example of bond forming in the above reaction.
		[1
	(iii)	Is the change given in (i) exothermic or endothermic?
		[1
(c)	(i)	Give two reasons why hydrogen may be considered to be the ideal fuel for th future.
		[2
	(ii)	Suggest a reason why hydrogen is not widely used at the moment.
		[1

[Total: 8]

- 5 Hydrogen reacts with the halogens to form hydrogen halides.
 - (a) Bond energy is the amount of energy, in kJ, that must be supplied (endothermic) to break one mole of a bond.

bond	bond energy in kJ/mol
H—H	
Cl-Cl	+2
H–Cl	+4

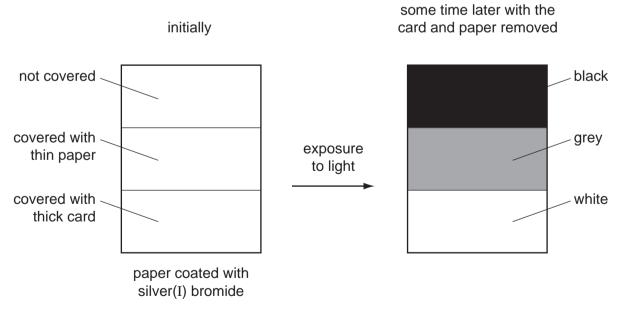
Use the above data to show that the following reaction is exothermic.

H—H + C <i>l</i> —C <i>l</i>	→ 2H—C <i>l</i>	
		[3]

(b)	The	ey react with wa	ter to fo	orm	acidic	soluti	ons.		
			HC <i>l</i>	+	H ₂ O	\rightleftharpoons	H ₃ O+	+	Cl
			HF	+	H ₂ O	\rightleftharpoons	H ₃ O+	+	F
	(i)	Explain why w	ater be	hav	es as a	a base	in both	of t	hese reactions.
									[2]
	(ii)	•	In the	oth	er equ	ilibriu			exists as molecules, the rest has the hydrogen fluoride exists as
		What does this	s tell yo	u at	out the	e stre	ngth of e	each	n acid?
						•••••			
									[2]
	(iii)	How would the	e pH of	thes	se two	soluti	ons diffe	r?	
									[1]
									[Total: 8]

6 Three of the factors that can influence the rate of a chemical reaction are:

(ii) Write a word equation for this exothermic reaction.


- physical state of the reactants
- light
- the presence of a catalyst
- (a) The first recorded dust explosion was in a flour mill in Italy in 1785. Flour contains carbohydrates. Explosions are very fast exothermic reactions.
 - (i) Use the collision theory to explain why the reaction between the particles of flour and the oxygen in the air is very fast.

 [2]

The decomposition of silver(I) bromide is the basis of film photography. The equation for this decomposition is:

This reaction is photochemical.

A piece of white paper was coated with silver(I) bromide and the following experiment was carried out.

(b) Explain the results.

(c)	aqu	e fermentation of glucose is catalysed by enzymes from yeast. Yeast is added to leous glucose, the solution starts to bubble and becomes cloudy as more yeast is are formed.
		$C_6H_{12}O_6(aq) \longrightarrow 2C_2H_5OH(aq) + 2CO_2(g)$
	The	e reaction is exothermic.
	Eve	entually the fermentation stops when the concentration of ethanol is about 12%.
	(i)	What is an enzyme?
		[1]
	(ii)	Pasteur said that fermentation was respiration in the absence of air. Suggest a definition of <i>respiration</i> .
		[2]
	(iii)	On a large scale, the reaction mixture is cooled. Suggest a reason why this is necessary.
		[1]
	(iv)	Why does the fermentation stop? Suggest two reasons.
		[2]
	(v)	When the fermentation stops, there is a mixture of dilute aqueous ethanol and yeast. Suggest a technique which could be used to remove the cloudiness due to the yeast.
		[1]

Name a technique which will separate the ethanol from the ethanol/water mixture.

[Total: 14]

[1]

(a	(i)	Write a symbol equation for the act	ion of heat on zinc hydroxide	
				[2]
	(ii)	Describe what happens when solid	sodium hydroxide is heated	strongly.
				[1]
(b)	Wha	at would be observed when copper(II) nitrate is heated?	
				[3]
(c)	forn was	n(III) sulphate decomposes when ned and the volume of sulphur trios heated. ss of one mole of Fe ₂ (SO ₄) ₃ is 400 g.	kide produced when 10.0 g o	
		$Fe_2(SO_4)_3$ (s) \longrightarrow	$ ightharpoonup Fe_2O_3(s) + 3SO_3(g)$	
		Number of moles of $Fe_2(SO_4)_3 =$		
	N	lumber of moles of Fe ₂ O ₃ formed =		
		Mass of iron(III) oxide formed =	g	
	N	umber of moles of SO ₃ produced =		
	V	olume of sulphur trioxide at r.t.p. =	dm ³	[5]

7